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A simple one-pot, three-component, catalytic,
highly enantioselective isoxazolidine synthesis
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Abstract—The highly chemo- and enantioselective organocatalytic three-component reaction between N-arylhydroxylamines, alde-
hydes and a,b-unsaturated aldehydes is presented; the reaction gives access to isoxazolidines in high yields with >25:1 dr and 91–
99% ee.
� 2007 Elsevier Ltd. All rights reserved.
Isoxazolidines are valuable chiral building blocks,1

which are readily converted to c-amino alcohols, b-ami-
no acids and b-lactams.1,2 Thus, asymmetric methods
that mainly rely on 1,3-dipolar cycloaddition reactions
have been developed for their preparation.1–3 In this
area, Lewis-acid catalyzed enantioselective cycloaddi-
tion transformations between nitrones and electron-defi-
cient alkenes (normal electron demand reaction) have
been successfully employed for the synthesis of isoxaz-
olidines.3 More recently, MacMillan first reported an
organocatalytic enantioselective synthesis of isoxazoli-
dines based on the chiral imidazolidinone catalyzed
reaction between preformed nitrones and enals.4 Imin-
ium activation which is central in this type of catalysis
has been successfully used in several asymmetric reac-
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tions.4–10 In this context, we recently reported that chiral
pyrrolidines catalyze the formation of 5-hydroxyisoxaz-
olidines via an asymmetric tandem aza-Michael/cycliza-
tion reaction pathway (Eq. 1).9b

There are several chemoselectivity issues that could arise
in the amine conjugate addition step, such as non-pro-
ductive imine formation and a racemic side reaction.
However, the pKa of the N-carbamate protected amine
1 together with the subsequent intramolecular cycliza-
tion controls the reaction pathway and pushes the equi-
librium towards product formation. Intrigued by this,
we became interested in whether simply changing the
pKa of amine 1 could modify its nucleophilicity towards
the previously undesired 1,2-addition to the enal (Eq. 2).
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This would lead to in situ nitrone formation and the
possibility for a completely different reaction to occur
with the activated enal, which would give the corre-
sponding isoxazolidine and not the 5-hydroxyisoxazoli-
dine. Notably, if the inherent chemoselectivity issues
could be controlled there would be a possibility for this
catalytic enantioselective process to be the foundation
for a novel one-pot, three-component reaction (Eq. 3).
To the best of our knowledge, no report of a catalytic
highly enantioselective isoxazolidine synthesis based on
an asymmetric multi-component 1,3-dipolar cycloaddi-
tion has been disclosed to date.11
N
H

OH
+

R1
R

O

HR2 H

O

+

NO

R

O

R2

R1

N
H

ð3Þ
Herein, we present a highly chemo-, distereo- and enan-
tioselective one-pot, three-component catalytic route to
the synthesis of valuable isoxazolidines (58–74% yield,
>25:1 dr, 91–99% ee).

In an initial catalyst screen for the reaction between
N-phenylhydroxylamine 1a (0.5 mmol), enal 2a
(0.25 mmol) and benzaldehyde 3a (0.5 mmol), we found
that proline 6, proline derivative 7 and simple chiral
Table 1. Catalyst screen for the one-pot reaction between 1a, 2a and 3a
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12: di(3,5-CF3)C6H3

Entry Catalyst Solvent Time (h

1 6 CHCl3 72
2 7 CHCl3 182
3 8 Toluene 24
4 9 Toluene 16
5 10 Toluene 24
6 11 CHCl3 16
7 12 CHCl3 16
8 13 CHCl3 24
9 14 Toluene 24

a Isolated yield of the pure product 4a.
b endo/exo-ratio determined by NMR analyses of the crude reaction mixture
c Determined by chiral-phase HPLC analyses of alcohol 5a.
d ent-4a was formed.
pyrrolidines such as 9, 11 and 12 catalyzed the chemo-
selective formation of isoxazolidine 4a (Table 1).
Aldehyde 4a slightly epimerized upon silica-gel
column chromatography. We therefore reduced it
in situ with NaBH4, to the more stable alcohol 5a. For
example, (S)-proline catalyzed the formation of ent-
4a in high yield as a single diastereomer (>25:1 dr,
endo:exo) with 77% ee (entry 1). To our delight, the pro-
tected diarylprolinol 1112 catalyzed the formation of 4a
with high efficiency and excellent diastereo- and enantio-
selectivity (entry 6). The highest enantioselectivity was
achieved when CHCl3 or toluene was used as the
solvent.

Thus, we decided to investigate the scope of the catalytic
asymmetric one-pot, three-component reaction using
CHCl3 as the solvent and chiral amine 11 as the catalyst
(Table 2).

The organocatalytic enantioselective three-component
reactions were highly chemo-, diastereo- and enantiose-
lective. The corresponding isoxazolidines 5 were ob-
tained in 58–74% yield with >25:1 dr and 91–99% ee.
For example, the reaction between N-4-chlorophenyl
hydroxylamine 1b, enal 2a and aldehyde 3a gave the cor-
responding product 5b after in situ reduction in 65%
yield with >25:1 dr and 97% ee (entry 2). The one-pot
reaction with aliphatic acceptor aldehydes such as iso-
valeraldehyde 3d exhibited excellent chemo- and stere-
oselectivity (entry 7). Several useful functionalities such
(20 mol%)
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84 >25:1 77d

22 >25:1 32d

0 — —
24 >25:1 39
0 — —

74 >25:1 98
54 >25:1 93
0 — —
0 — —
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Table 2. Scope of the organocatalytic three-component reaction
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1 2 3 2. NaBH4
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+ R1 H
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R
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5

CHCl3, rt, 16 h

Entry Ar R R1 Product Yielda (%) drb eec (%)

1 Ph n-Bu Ph 5a 74 >25:1 98
2 4-ClC6H4 n-Bu Ph 5b 65 >25:1 97

3 Ph Ph 5c 68 >25:1 97

4 Ph n-Bu 4-ClC6H4 5d 65 >25:1 99
5 Ph CO2Et Ph 5e 63 >25:1 91
6 Ph n-Bu 4-BrC6H4 5f 71 >25:1 99
7 Ph n-Bu i-Pr 5g 74 >25:1 97

8 Ph n-Bu 5h 58 >25:1 99

9 Ph n-Bu Ph 5i 73 >25:1 97

10 Ph Me Ph 5j 71 >25:1 94
11 4-ClC6H4 n-Pr 4-MeOC6H4 5k 66 >25:1 99

a Isolated yield of the pure product 5 after silica-gel chromatography.
b endo/exo-ratio determined by NMR analyses of the crude reaction mixture.
c Determined by chiral-phase HPLC or GC analyses.

Figure 1. Proposed transition state.14
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as aromatic, ester and olefins were tolerated on enal 2
and aldehyde 3 components. The reaction between
hydroxylamine 1a, heptenal and cinnamic aldehyde
was highly chemoselective and the corresponding isox-
azolidine 5i was the only product formed in 73% yield
with >25:1 dr and 97% ee (entry 9). Thus, the organocat-
alytic one-pot, three-component reactions showed that
the substitution on amine 1 and enal 2 was very impor-
tant in directing the outcome of the different possible
catalytic reaction pathways (Eqs. 1–3). In fact, chiral
amine 11- or 12-catalyzed asymmetric three-component
reaction between hydroxylamine 1c, heptenal 2a and
aldehyde 3a gave the corresponding oxa-Michael prod-
uct 15, which is in accordance with Jørgensen,10a and
not isoxazolidine 5l (Eq. 4). Thus, by tuning the reactiv-
ity of hydroxylamines 1, several completely different cat-
alytic transformations can be achieved which lead to the
formation of valuable compounds.
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Comparison with the literature revealed that the abso-
lute configuration of 5j at C3, C4 and C5 was R, R, R,
respectively.13 Thus, efficient shielding of the Si-face of
the chiral iminium intermediate by the bulky aryl groups
of 11 leads to stereoselective Re-facial endo-addition to
the activated olefin via the plausible transition state de-
picted in Figure 1.

In the case of (S)-proline and its derivatives, the oppo-
site facial attack occurs leading to formation of ent-4.
In summary, we have described a simple highly chemo-,
diastereo- and enantioselective organocatalytic one-pot,
three-component reaction between N-aryl hydroxylam-
ines, aldehydes and a,b-unsaturated aldehydes.15 The
reaction represents a versatile asymmetric entry to a
variety of valuable isoxazolidines in high yields with
>25:1 dr and 91–99% ee. Mechanistic studies, synthetic
applications of this transformation as well as develop-
ment of other enantioselective multi-component reac-
tions are ongoing in our laboratory.
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catalyst (0.05 mmol, 20 mol %) and 0.25 mmol (1.0 equiv)
of a,b-unsaturated aldehyde were added. The reaction was
stirred at room temperature for the time shown in Tables 1
and 2. Next, the crude was reduced ‘in situ’ at 0 �C with
NaBH4 in MeOH. After 5 min the reaction was quenched
with AcOEt/HCl 1 M, dried over Na2SO4, filtered and
concentrated. Purification of the resultant residue by silica
gel chromatography provided the corresponding isoxaz-
olidine 5. Compound 5a: Colorless solid. IR (KBr): 3397,
2928, 2392, 1722, 1597, 1519, 1346, 1261, 694 cm�1. 1H
NMR (400 MHz, CDCl3): d = 7.54–6.88 (m, 10H), 4.54
(d, J = 6.5 Hz, 1H), 4.05–3.99 (m, 1H), 3.76–3.69 (m, 2H),
2.42–2.34 (m, 1H), 1.79–1.73 (m, 2H), 1.63–1.57 (m, 2H),
1.45–1.38 (m, 2H), 0.95 (t, J = 7.1 Hz, 3H); 13C NMR
(100 MHz, CDCl3): 152.3, 142.9, 129.1, 129.0, 127.6,
126.8, 121.4, 114.3, 81.3, 73.4, 61.1, 62.0, 33.0, 29.0,
23.0, 14.3. [a]D +48.9 (c 1.0, CHCl3). HRMS (ESI): calcd
for [M+Na]+ (C20H25NO2) requires m/z 334.1778, found
334.1763. The enantiomeric excess was determined by
HPLC with an AD column. (n-hexane/i-PrOH = 93:7,
k = 250 nm), 0.5 mL/min; tR = major enantiomer
22.1 min, minor enantiomer 16.2 min.
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